Total Synthesis of the Putative Structure of the Lupin Alkaloid Plumerinine

Daniel L. Comins,* Xiaoling Zheng, and R. Richard Goehring

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

daniel_comins@ncsu.edu

Received March 5, 2002

¹⁶¹¹-**¹⁶¹³**

The key step is a highly facial selective intramolecular [2 + **2] photocycloaddition of a 2,3-dihydro-4-pyridone. The reported spectral data for plumerinine did not match that of our synthetic 1.**

In 1989, Malik and co-workers reported the isolation of a novel lupin alkaloid from the stem of *Plumeria rubra* which commonly grows as an ornamental plant in southeast Asia. This plant is reputed to possess purgative, diuretic, abortificient, and antituberculotic properties and is also used as a remedy for rheumatism, diarrhea, blennorrhea, gonorrhea, syphilis, venereal sores, and leprosy. The alkaloid was named plumerinine and assigned the structure **1** on the basis of extensive spectral studies using NMR, IR, HRMS, and UV.1 Structure **1** contains a quinolizidine skeleton, four substituents, and five stereogenic centers in a relatively compact molecule. The interesting structure of **1** and its potential biological activities prompted us to pursue its synthesis.

Our synthesis plan for the preparation of **1** starting from 4-methoxypyridine is depicted in Scheme 1. The strategy uses a facial selective $[2 + 2]$ photocyclization of dihydropyridone **2** to prepare the key tricyclic intermediate **3**. It was anticipated that cyclobutane ring opening of **3** would lead to **4**, a viable precursor to **1**.

Treatment of 4-methoxypyridine with 4-pentenoyl chloride and isopropylmagnesium bromide gave the 1-acyl-2,3-

⁽¹⁾ Kazmi, S. N.; Ahmed, W.; Malik, A. *Heterocycles* **1989**, *29*, 1901.

dihydro-4-pyridone **2** in 75% yield2 (Scheme 2). On irradiation of **2** in acetone (460 W Hanovia Hg lamp), an intramolecular $[2 + 2]$ photocycloaddition occurred to provide a 90% yield of cycloadduct **5** as a single diastereomer. Since the C-2 substituent of 2 is axial, due to $A^{1,3}$ strain,³ cycloaddition occurred exclusively from the less hindered olefin face.⁴ In this key step, the quinolizidine ring system was constructed and three of the five stereocenters of **1** were established. The center at C-2 of **5** has the incorrect stereochemistry relative to the target, so epimerization was required.

When phenylselenyl chloride was added to an ethyl acetate solution of **5**, an 80% yield of *trans*-α-phenylselenyl ketone

(3) For reviews on A1,3 strain, see: Hoffmann, R. *Chem. Re*V. **¹⁹⁸⁹**, *⁸⁹*, 1841. Johnson, F. *Chem. Re*V. **¹⁹⁶⁸**, *⁶⁸*, 375.

(4) For previous $[2 + 2]$ photocycloaddition reactions of 2,3-dihydro-4-pyridones, see: (a) Guerry, P.; Neier, R. *Chimia* **1987**, *41*, 341. Guerry, P.; Neier, R. *J. Chem. Soc*., *Chem. Commun.* **1989**, 1727. Guerry, P.; Blanco, P.; Brodbeck, H.; Pasteris, O.; Neier, R. *Hel*V*. Chem. Acta* **¹⁹⁹¹**, *⁷⁴*, 163. (b) Comins, D. L.; Zheng, X. *J. Chem. Soc*., *Chem. Commun.* **1994**, 2681. (c) Comins, D. L.; Lee, Y.; Boyle, P. D. *Tetrahedron Lett*. **1998**, *39*, 187. (d) Comins, D. L.; Zhang, Y.-M.; Zheng, X. *J. Chem. Soc., Chem. Commun.* **1998**, 2509.

6 was obtained along with 15% of the corresponding *cis*isomer. Oxidative elimination of **6** with hydrogen peroxide gave the desired enone **7** in moderate yield. It was anticipated that catalytic hydrogenation would occur from the less hindered convex side of **7** to provide the needed stereochemistry at C-2. Hydrogenation of **7** over 5% Pd/C in EtOAc at 0 °C gave a quantitative yield of a 10/1 mixture of **3** and epimer **5**. The structure of **3** was confirmed by single-crystal X-ray analysis.

Treatment of 3 with SmI₂ (THF, DMPU) effected cyclobutane ring opening4b,d to give bicyclic ketone **8** in 55% yield. Reduction of **8** with L-Selectride or hydrogenation over washed⁵ PtO₂ gave exclusively the desired alcohol 4 in near quantitative yield. With the stereoselective introduction of the C-4 hydroxyl group, four of the five required stereocenters of **1** were established.

Conclusion of the synthesis required the conversion of the *γ*-lactam to a piperidine ring with incorporation of a *â*-methyl group at C-10. The hydroxyl group of **4** was protected as a benzyl ether (Scheme 3). The lactam **9** was then subjected

to methylation/reduction conditions. After considerable study, a one-pot sequence was developed. Addition of excess methylmagnesium bromide to **9**, followed by acidic methanol/ NaCNBH3, provided a 90% yield of amine **10** as a single diastereomer. Unfortunately, this highly stereoselective transformation afforded the C-10 epimer of the desired compound as confirmed by X-ray analysis of its hydrobromide salt. The stereochemical outcome of this conversion can be explained through stereoelectronic control⁶ during axial hydride addition to a low-energy iminium ion intermediate as depicted in Figure 1.

After several unsuccessful attempts at in situ reduction/ methylation of **9**, stepwise processes to prepare the desired bicyclic amine were investigated. Treatment of **9** with

^{(2) (}a) Comins, D. L.; Joseph, S. P. In *Ad*V*ances in Nitrogen Heterocycles*; Moody, C. J., Ed.; JAI Press Inc.; Greenwich, CT, 1996; Vol. 2, pp 251-294. (b) Comins, D. L.; Joseph, S. P. In *Comprehensive Heterocyclic Chemistry*, 2nd ed.; McKillop, A., Ed.; Pergamon Press: Oxford, England, 1996; Vol. 5, pp 37-89. (c) Comins, D. L. *J. Heterocycl. Chem.* **¹⁹⁹⁹**, *³⁶*, 1491.

⁽⁵⁾ Mitsui, S.; Saito, H.; Yamashita, Y.; Kaminaga, M.; Senada, Y. *Tetrahedron* **1973**, *29*, 1531.

^{(6) (}a) Deslongchamps, P. *Stereoelectronic Effects in Organic Chemistry*; Pergamon: New York, 1983; Chapter 6. (b) Stevens, R. V. *Acc. Chem. Res.* **¹⁹⁸⁴**, *¹⁷*, 289-296 and references therein.

Figure 1. Axial attack of hydride on iminium ion (MMFF).

methylmagnesium bromide followed by workup with N aBH $_4$ / MeOH provided alcohols **11** as an equal mixture of diastereomers (Scheme 4). The alcohols **11** on treatment with HBr

formed the crude corresponding salts, which were cyclized using Oliver and Sonnet's conditions ($Ph_3P\cdot Br_2$; TEA)⁷ to provide quinolizidines **12** and **10** as a 1:1 mixture. Purification of the crude reaction products proved difficult, so an alternative procedure was developed. The alcohols **11** were converted to the corresponding crude mesylates **13** (NaH, MsCl), which were treated with lithium carbonate in EtOAc at room temperature (Scheme 5). Under these conditions, only diastereomer **13a** cyclized and the desired product **12**

could be easily isolated by chromatography. The benzyl ether of **12** was cleaved using standard catalytic hydrogenolysis to provide **1** in 90% yield. The structure of **1** was confirmed by X-ray analysis of its hydrobromide salt. Unfortunately, the ¹ H and 13C NMR data of our synthetic **1**, or its hydrobromide salt, did not match the corresponding data reported by Malik for "plumerinine". It appears that a structure reassignment is in order for this natural product.

In summary, a stereocontrolled synthesis of quinolizidine **1** has been accomplished in 10 steps from 4-methoxypyridine. A novel approach to the quinolizidine skeleton using a photocycloaddition/cyclobutane ring-opening sequence was developed. A highly facial selective intramolecular $[2 + 2]$ photocycloaddition of a 2,3-dihydro-4-pyridone containing a terminal olefin tethered to nitrogen was key to the success of this synthesis.

Acknowledgment. We express appreciation to the National Institutes of Health (Grant GM 34442) for financial support of this research. The authors thank Dr. Paul Boyle and Dr. Phirtu Singh for X-ray crystallographic analyses of **1**, **3**, **4**, and **10**. NMR and mass spectra and X-ray data were obtained at NCSU instrumentation laboratories, which were established by grants from the North Carolina Biotechnology Center and the National Science Foundation (Grants CHE-9509532, CHE-0078253, CHE-9509532).

Supporting Information Available: Characterization data for compounds **²**-**5**, **⁷**-**10**, and **¹²** and comparison tables of NMR data for synthetic **1**. ¹ H NMR spectra of **1**, **4**, **9**, **10**, and **12** and ORTEP plots and X-ray crystal data for **1**, **3**, **4**, and **10**. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽⁷⁾ Oliver, J. E.; Sonnet, P. E. *J. Org. Chem.* **1974**, *39*, 2662. OL025820Q